Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications

TitleBiosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications
Publication TypeJournal Article
Year of Publication2018
AuthorsY Feng, KE Marusak, L You, and S Zauscher
JournalCurrent Opinion in Colloid & Interface Science
Volume38
Start Page190
Pagination190 - 203
Date Published11/2018
Abstract

© 2018 Elsevier Ltd Transition metal (TM) chalcogenides are a group of semiconductor materials with applications that range from antibacterial particles to thin films in energy conversion devices. Significant progress in synthetic biology combined with the benefits of low energy consumption and low toxic waste burden of “green synthesis,” have directed considerable research attention to the biosynthesis of these inorganic materials. TM chalcogenide nanoparticles (NP) can be produced by a variety of microorganisms including bacteria, fungi, algae, and yeast, as well as cell-free approaches using enzymes. Recent research shows that the size, crystal structure, and bandgap of these TM NPs can be well controlled, which has led to prototypical applications of these biosynthetic NPs in the areas of bio-remediation, bio-imaging, photocatalysis, and energy conversion. This review is the first to combine recent progress in the biosynthesis, property control, and applications of TM chalcogenide NPs.

DOI10.1016/j.cocis.2018.11.002
Short TitleCurrent Opinion in Colloid & Interface Science